Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • How i can interpret this model? *Prob > chi2 = * *0.0000

    Code:
    * Model A
    
    . eststo A, title ("Model A"):  xtmixed Y X2 X1 time c.X2#c.time c.X1#c.time group c.group#c.X2 c.group#c.X1 c.group#c.X2#c.time c.group#c.X1#c.time || company: ,cov(un) variance mle  
    estadd scalar deviance = -2*e(ll)
    
    
    estadd scalar cov = tanh([atr1_1_1_2]_b[_cons]) * exp([lns1_1_1]_b[_cons]) *exp([lns1_1_2]_b[_cons])
    
    * show table with all models in STATA results window
    
    esttab, se nostar transform(ln*: exp(@) exp(@) at*: tanh(@) (1-tanh(@)^2)) label eqlabels("" "var(time)" "var(_cons)" "cov(time,_cons)" "var(Residual)", none) varlabels(,elist(weight:_cons "{break}{hline @width}"))  varwidth(16)
    
    * save results in .rtf file
    
    esttab using dj_models.rtf, replace nogap onecell se compress label eqlabels("" "var(time)" "var(_cons)" "cov(time,_cons)" "var(Residual)", none)transform(ln*: exp(2*@) 2*exp(2*@) at*: tanh(@) (1-tanh(@)^2)) stats(cov deviance aic bic, labels(Covariance Deviance AIC BIC))
    Click image for larger version

Name:	aaz.png
Views:	1
Size:	64.7 KB
ID:	1479068


    Click image for larger version

Name:	aaza.PNG
Views:	2
Size:	24.4 KB
ID:	1479070



    . test group c.group#c.X2 c.group#c.X1 c.group#c.X2#c.time c.group#c.X1#c.time

    ( 1) [Y]group = 0
    ( 2) [Y]c.group#c.X2 = 0
    ( 3) [Y]c.group#c.X1 = 0
    ( 4) [Y]c.group#c.X2#c.time = 0
    ( 5) [Y]c.group#c.X1#c.time = 0

    chi2( 5) = 175.81
    Prob > chi2 = 0.0000

    Attached Files

  • #2
    The five-constraint test you show at the end is the test of all terms in the model that involve the variable group, most of those terms being interactions with other variables. In this context, that is a test of the null hypothesis that group is unrelated to the outcome Y. It is analogous to just -test group- in a model where group is not interacted with any other variables.

    Comment


    • #3
      Thank You!

      Comment

      Working...
      X